

SELinux for Android 8.0
Changes & Customizations

Table of​ ​Contents

Overview 3

Design goals 3

About Android 8.0 architecture 4

About SELinux 5

SELinux for Android 7.x. 6

SELinux source files 6

SELinux build logic 6

SELinux files 8

SELinux initialization 8

Android 8.0 SELinux design 8

First stage mount 8

SELinux contexts labeling 9

File contexts 9

Property contexts 9

Service contexts 10

Seapp contexts 11

MAC permissions 11

Object ownership and labeling 12

Type/attribute namespacing 12

System Property and process labeling ownership 12

File ownership 13

System (/system) 13

Vendor (/vendor) 13

Procfs (/proc) 14

 ​02/13/2018 1

Debugfs (/sys/kernel/debug) 14

Tracefs (/sys/kernel/debug/tracing) 14

Sysfs (/sys) 14

tmpfs (/dev) 15

Rootfs (/) 15

Data (/data) 15

SELinux policy building and customization 15

Platform public sepolicy 15

Platform private sepolicy 16

Platform private mapping 16

Building SELinux policy 16

Policy compatibility 17

Compatibility attributes 18

Policy writability 19

Policy diffs 20

Platform upgrades 20

Same types 20

New types 21

Removed types 22

New class/permissions 24

Removed class/permissions 24

Vendor customization for new/relabeled types 24

Platform-public policy 25

Mapping to attribute chains 25

Version uprevs 25

Performance impact of multiple attributes 26

Customizing SEPolicy 26

Policy placement 26

Supported policy scenarios 27

 ​02/13/2018 2

vendor-image-only extensions 27

vendor-image support to work with AOSP 27

system-image-only extensions 27

vendor-image extensions that serve extended AOSP components 28

system-image extensions that access only AOSP interfaces 29

vendor-image extensions that serve new system components 29

Unsupported policy scenarios 29

Additional extensions to system-image that need permission
to new vendor-image components after a framework-only OTA 29

© 2017 Google, Inc. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject to
change and any expected future products, features or functionality will be provided on an if and when available basis.

Overview
This document describes SELinux changes and customizations designed to support
modularity and updatability of SELinux policy in Android 8.0. ​The goal of these changes is
to enable System on Chip (SoC) vendors and Original Device Manufacturer (ODM) partners
to customize SELinux settings in an isolated manner without cross-partition modifications.

Design goals

The SELinux policy build flow for Android 4.4 through Android 7.0 merged all sepolicy
fragments (platform and non-platform) then generated monolithic files in the root
directory. However, this flow contradicts the primary goal of Android 8.0 architecture,
which is to allow partners to update their parts of the policy, build their images
(​vendor.img ​, ​boot.img ​, etc​), then update those images independent of the platform or
vice versa (i.e., perform a platform update without updating partner images).

Android 8.0 design goals are:

● Policy Modularization​. In Android 4.4 through Android 7.0, most SELinux files resided
in ​rootfs ​, thus SoC vendors and the ODM partners modified ​boot.img ​ (for non-A/B
devices) or ​system.img ​ (for A/B devices) every time policy was modified. The Android
8.0 model provides a method for vendors and partners to change only their partitions
when they need to modify their portions of the SELinux policy.

● Policy Compatibility​. On devices running Android 8.0, it is possible to upgrade the
platform image ahead of vendor/partner images; this can occur during an over-the-air
(OTA) update, such as a framework OTA.

 ​02/13/2018 3

While it is possible to have higher/newer platform (framework) version running on the
device, the opposite case is not supported; i.e., the non-platform images
(​vendor.img/odm.img ​) cannot have a new version than the platform (​system.img ​). So, a
newer platform version might introduce SELinux compatibility issues because the platform
SELinux policy is at a newer version than vendor/partner SELinux parts of the policy. The
Android 8.0 model provides a method to retain compatibility to prevent unnecessary
simultaneous OTAs.

About Android 8.0 architecture

An Android device includes the following partitions:

Figure 1​. Android partitions.

● system.img ​. Contains mainly Android framework.

● boot.img ​. (kernel/ramdisk) Contains Linux kernel + Android patches.

● vendor.img ​. Contains SoC-specific code and configurations.

● odm.img ​. Contains device-specific code and configurations.

 ​02/13/2018 4

● oem.img ​. Contains OEM/carrier-related configurations and customizations.

● bootloader ​. Brings up the kernel (vendor-proprietary).

● radio ​. Modem (proprietary).

Prior to Android 8.0, the ​vendor ​, ​odm ​, and ​oem ​ images were ​optional​; files belonging to
these images were placed in ​boot.img ​ or ​system.img ​ with symlinks (such as ​/vendor ​ >
/system/vendor ​) when absent. Android 8.0 makes the vendor partition ​mandatory​.

The goal is to modularize Android partitions and make them interchangeable by defining a
core, standard interface between the Android Platform (on ​system.img ​) and
vendor-provided code. This standard interface enables the Android Platform to be updated
without affecting the SoC and ODM partitions. For example, it should be possible to
upgrade a device ​system.img ​ from Android 8.0 to Android P while other images (such as
vendor.img ​, ​odm.img ​, etc.) remain at Android 8.0. This modularity enables timely
Android platform upgrades (such as ​monthly security updates​) without requiring SoC/ODM
partners to update SoC- and device-specific code.

About SELinux

SELinux is a labeling system that controls the permissions (read/write, etc.) a subject
context has over a target object such as ​directory/device/file​/ ​process​/ ​socket​/ ​.
(For an analogy, refer to ​Your visual how-to guide for SELinux policy enforcement​.)

Each process and object has an associated label, which is also called a ​context. ​Contexts
are comprised of a user, a role, a type and an multi-level-security (MLS) portion:

● The ​type​ of a process is often referred to as a ​domain​ and is defined in SELinux policy.

● The label of an ​object​ is usually decided by the corresponding security-contexts files.

SELinux policy also contains the rules that state how each domain may access each object.
In Android 4.4 → Android 7.0, SELinux policy files (​sepolicy ​, ​file_contexts.bin ​,
property_contexts etc ​) are included the rootfs image as follows:

/

.

.

├── file_contexts.bin (file_contexts pre-N)

├── property_contexts

├── seapp_contexts

├── sepolicy

├── service_contexts

.

These files contain SELinux policy rules and labels from ​all​ development participants,
including ODM, SoC, and AOSP. In Android 8.0, these files are modular.

 ​02/13/2018 5

https://source.android.com/security/bulletin/index.html
https://opensource.com/business/13/11/selinux-policy-guide

SELinux for Android 7.x.

The following sections describe the SELinux policy and contexts build flow for Android 7.0.

SELinux source files

SELinux customization involves the following files:

● external/selinux​: External SELinux project, used to build HOST command line utilities to
compile SELinux policy and labels.

○ external/selinux/libselinux​: Android uses only a subset of the external libselinux
project along with some Android specific customizations. For details, refer to
external/selinux/README.android​.

○ external/selinux/libsepol​:

■ chkcon​: Determine if a security context is valid for a given binary policy (host
executable).

■ libsepol​: SELinux library for manipulating binary security policies (host
static/shared library, target static library).

○ external/selinux/checkpolicy​: SELinux policy compiler (host executables:
checkpolicy, checkmodule, and dispol). Depends on libsepol.

● system/sepolicy​: Core Android SELinux policy configurations, ​including contexts and
policy files​. Major sepolicy build logic is also here (​system/sepolicy/Android.mk ​).

SELinux build logic

SELinux policy is created by combining the core AOSP policy with device-specific
customizations. The combined policy is then passed to the policy compiler and various
checkers. Device-specific customization is done through the ​BOARD_SEPOLICY_DIRS
variable defined in device-specific Boardconfig.mk file. This global build variable contains a
list of directories that specify the order in which to search for additional policy files.

For example, a SoC vendor and an ODM might each add a directory, one for the
SoC-specific settings and another for device-specific settings, to generate the final SELinux
configurations for a given device:

● BOARD_SEPOLICY_DIRS += device/$SoC/common/sepolicy

● BOARD_SEPOLICY_DIRS += device/$SoC/$DEVICE/sepolicy

The content of ​file_contexts ​ files in ​system/sepolicy ​ and ​BOARD_SEPOLICY_DIRS
are concatenated to generate the ​file_contexts.bin ​ on the device:

 ​02/13/2018 6

https://android.googlesource.com/platform/external/selinux/
https://android.googlesource.com/platform/external/selinux/+/master/libselinux/
https://android.googlesource.com/platform/external/selinux/+/master/README.android
https://android.googlesource.com/platform/external/selinux/+/master/libsepol/
http://man7.org/linux/man-pages/man8/chkcon.8.html
https://android.googlesource.com/platform/external/selinux/+/master/libsepol/
https://android.googlesource.com/platform/external/selinux/+/master/checkpolicy/
https://android.googlesource.com/platform/system/sepolicy/+/master
https://source.android.com/devices/tech/security/selinux/implement.html#key_files
https://source.android.com/devices/tech/security/selinux/implement.html#key_files

Figure 2​. SELinux build logic.

The ​sepolicy​ file consists of multiple source files:

● The plain text ​policy.conf ​ is generated by concatenating ​security_classes ​,
initial_sids ​, … *.​te ​, ​genfs_contexts ​, and ​port_contexts ​ in that order.

● For each file (e.g., ​security_classes ​), its content is the concatenation of the files
with the same name under ​system/sepolicy/ ​ and ​BOARDS_SEPOLICY_DIRS ​.

● The ​policy.conf ​ is sent to SELinux compiler for syntax checking and compiled into
binary format as sepolicy on the device.

Figure 3​. SELinux policy file.

 ​02/13/2018 7

SELinux files

Android devices typically contain the following SELinux-related files:

● selinux_version

● sepolicy ​: binary output after combining policy files (​security_classes ​,
initial_sids ​, *.​te ​, etc.)

● file_contexts

● property_contexts

● seapp_contexts

● service_contexts

● system/etc/mac_permissions.xml

 For more details, refer to ​Implementing SELinux​ on source.android.com.

SELinux initialization

When the system boots up, SELinux is in ​permissive​ mode (and not in ​enforcing​ mode). The
init process performs the following tasks:

1. Loads sepolicy files from ramdisk into the kernel through ​/sys/fs/selinux/load ​.

2. Switches SELinux to enforcing mode.

3. Re-​exec() ​s itself to apply the SELinux domain rule to itself.

To shorten the boot time, perform the re-​exec() ​ on the init process as soon as possible.

Android 8.0 SELinux design
The following sections describe the SELinux design considerations and changes to support
the ​design goals​ (policy ​modularity and partial updatability) of Android 8.0.

First stage mount

Before Android 8.0, SELinux files were built by merging device-specific (i.e. non-platform)
policy files with the Android (i.e. platform) policy files monolithically. Android 8.0 provides a
method to keep these ​non-platform​ changes separate from the ​platform​ SELinux policy
so partners can build and update settings independently.

As modularized SELinux policy files are stored on partner partitions (e.g. ​/vendor ​), the init
process must mount the ​system ​ and ​vendor ​ partitions earlier so it can read SELinux files

 ​02/13/2018 8

https://source.android.com/security/selinux/implement.html#key_files

from those partitions and merge them with core SELinux files in the ​system ​ directory
(before loading them into the kernel). For details, refer to the ​change​ that mounts these
partitions earlier.

SELinux contexts labeling

File contexts

Android 8.0 introduces the following changes for ​file_contexts ​:

● To avoid additional compilation overhead on device during boot, ​file_contexts
cease to exist in the binary form. Instead, they are readable, regular expression text
file such as ​{property, service}_contexts ​ (as they were pre-7.0).

● The ​file_contexts ​ are split between two files:

○ Plat_file_contexts

■ Android platform ​file_context ​ that has no device-specific labels, except for
labeling parts of ​/vendor ​ partition ​that must be labeled precisely to ensure
proper functioning of the platform (e.g. the sepolicy files).

■ Must reside in ​system ​ partition at
/system/etc/selinux/plat_file_contexts ​ on device and be loaded by
init ​ at the start along with the non-platform ​file_context ​.

○ Nonplat_file_contexts

■ Device-specific ​file_context ​ built by combining ​file_contexts ​ found in
the directories pointed to by ​BOARD_SEPOLICY_DIRS ​ in the device’s
Boardconfig.mk ​ files.

■ Must be installed at ​/vendor/etc/selinux/nonplat_file_contexts ​ in
vendor ​ partition and be loaded by ​init ​ at the start along with the platform
file_context ​.

Property contexts

In Android 8.0, the ​property_contexts ​ is split between two files:

● plat_property_contexts

○ Android platform ​property_context ​ that has no device-specific labels.

○ Must reside in ​system ​ partition at
/system/etc/selinux/plat_property_contexts ​ and be loaded by ​init ​ at
the start along with the non-platform ​property_contexts ​.

 ​02/13/2018 9

https://android-review.googlesource.com/#/q/topic:early-mount-support+(status:open+OR+status:merged)

● nonplat_property_contexts

○ Device-specific ​property_context ​ built by combining ​property_contexts
found in the directories pointed to by ​BOARD_SEPOLICY_DIRS ​ in device’s
Boardconfig.mk ​ files.

○ Must reside in ​vendor ​ partition at
/vendor/etc/selinux/nonplat_property_contexts ​ and be loaded by ​init
at the start along with the platform ​property_context

Service contexts

In Android 8.0, the ​service_contexts ​ is split between the following files:

● plat_service_contexts

○ Android platform-specific ​service_context ​ for the ​servicemanager ​. The
service_context ​ has no device-specific labels.

○ Must reside in ​system ​ partition at
/system/etc/selinux/plat_service_contexts ​ and be loaded by
servicemanager ​ at the start along with the non-platform ​service_contexts ​.

● nonplat_service_contexts

○ Device-specific ​service_context ​ built by combining ​service_contexts ​ found
in the directories pointed to by ​BOARD_SEPOLICY_DIRS ​ in the device’s
Boardconfig.mk ​ files.

○ Must reside in ​vendor ​ partition at
/vendor/etc/selinux/nonplat_service_contexts ​ and be loaded by
servicemanager ​ at the start along with the platform ​service_contexts

○ Although ​servicemanager ​ looks for this file at boot time, for a fully compliant
TREBLE ​ device, the ​nonplat_service_contexts ​ MUST not exist. This is because
all interaction between ​vendor ​ and ​system ​ processes MUST go through
hwservicemanager ​/​hwbinder ​.

● plat_hwservice_contexts

○ Android platform ​hwservice_context ​ for ​hwservicemanager ​ that has no
device specific labels.

○ Must reside in ​system ​ partition at
/system/etc/selinux/plat_hwservice_contexts ​ and be loaded by
hwservicemanager ​ at the start along with the ​nonplat_hwservice_contexts ​.

● nonplat_hwservice_contexts

 ​02/13/2018 10

○ Device-specific ​hwservice_context ​ built by combining ​hwservice_contexts
found in the directories pointed to by ​BOARD_SEPOLICY_DIRS ​ in the device’s
Boardconfig.mk ​ files.

○ Must reside in ​vendor ​ partition at
/vendor/etc/selinux/nonplat_hwservice_contexts ​ and be loaded by
hwservicemanager ​ at the start along with the ​plat_service_contexts ​.

● vndservice_contexts

○ Device-specific ​service_context ​ for the ​vndservicemanager ​ built by
combining ​vndservice_contexts ​ found in the directories pointed to by
BOARD_SERPOLICY_DIRS ​ in the device’s ​Boardconfig.mk ​.

○ This file must reside in ​vendor ​ partition at
/vendor/etc/selinux/vndservice_contexts ​ and be loaded by
vndservicemanager ​ at the start.

Seapp contexts

In Android 8.0, the ​seapp_contexts ​ is split between two files:

● plat_seapp_contexts

○ Android platform ​seapp_context ​ that has no device-specific changes.

○ Must reside in ​system ​ partition at
/system/etc/selinux/plat_seapp_contexts.

● nonplat_seapp_contexts

○ Device-specific extension to platform ​seapp_context ​ built by combining
seapp_contexts ​ found in the directories pointed to by ​BOARD_SEPOLICY_DIRS
in the device’s ​Boardconfig.mk ​ files.

○ Must reside in ​vendor ​ partition at
/vendor/etc/selinux/nonplat_seapp_contexts ​.

MAC permissions

In Android 8.0, the ​mac_permissions.xml ​ is split between two files:

● Platform ​mac_permissions.xml

○ Android platform ​mac_permissions.xml ​ that has no device-specific changes.

○ Must reside in ​system ​ partition at ​/system/etc/selinux/.

 ​02/13/2018 11

● Non-Platform ​mac_permissions.xml

○ Device-specific extension to platform ​mac_permissions.xml ​ built from
mac_permissions.xml ​ found in the directories pointed to by
BOARD_SEPOLICY_DIRS ​ in the device’s ​Boardconfig.mk ​ files.

○ Must reside in ​vendor ​ partition at ​/vendor/etc/selinux/.

Object ownership and labeling

The Android 8.0 goal of independent updates for platform and vendor components means
that ownership must be clearly defined for each object. For example, if the vendor labels
/dev/foo ​ and the platform then labels ​/dev/foo ​ in a subsequent OTA, there will be
undefined behavior. For SELinux, this manifests as a labeling collision. The device node can
have only a single label which resolves to whichever label is applied last. As a result:

● Processes that ​need access ​to the unsuccessfully applied label will lose access to the
resource.

● Processes that ​gain access​ to the file may break because the wrong device node was
created.

System properties also have potential for naming collisions that could result in undefined
behavior on the system (as well as for SELinux labeling). Collisions between platform and
vendor labels can occur for any object that has an SELinux label, including properties,
services, processes, files, and sockets. To avoid these issues, clearly define ownership of
these objects.

In addition to label collisions, SELinux type/attribute names may also collide. A
type/attribute name collision will always result in a policy compiler error.

Type/attribute namespacing

SELinux does not allow multiple declarations of the same type/attribute. Policy with
duplicate declarations will fail to compilation. To avoid type and attribute name collisions,
all non-platform declarations should be namespace starting with ​np_ ​.

type foo, domain; → type np_foo, domain;

System Property and process labeling ownership

Avoiding labeling collisions is best solved using property namespaces. Vendors should
prefix their property names with​ ​vendor ​. Examples:

foo.xxx → vendor.foo.xxx

 ​02/13/2018 12

ro.foo.xxx → ro.vendor.foo.xxx

persist.foo.xxx → persist.vendor.foo.xxx

This naming convention is ​recommended​ in Android 8.0 and will be enforced in Android P.

File ownership

Preventing collisions for files is challenging because platform and vendor policy both
commonly provide labels for all filesystems. Unlike type naming, namespacing of files is not
practical since many of them are created by the kernel. Instead, we need to enumerate
over the different filesystems and provide rules as to where the platform and vendor policy
may provide labels. For Android 8.0, these are recommendations without technical
enforcement. In the future, these recommendations will be enforced by the Vendor Test
Suite (VTS).

System (/system)
Only the system image must provide labels for ​/system ​ components through
file_contexts ​, ​service_contexts ​ etc. If labels for ​/system ​ components are added in
/vendor ​ policy, a framework-only OTA update may not be possible.

Vendor (/vendor)

The AOSP SELinux policy already labels parts of ​vendor ​ partition the platform interacts
with, which enables writing SELinux rules for platform processes to be able to talk and/or
access parts of ​vendor ​ partition. Examples:

/vendor path Platform-Provided
Label

Platform Processes
depending on the label

/vendor(/. ​*​)? vendor_file All HAL clients in framework,
ueventd, etc.

/vendor/framework(/. ​*​)? vendor_framework_file dex2oat, appdomain, etc.

/vendor/app(/. ​*​)? vendor_app_file dex2oat, installd, idmap, etc.

/vendor/overlay(/. ​*​) vendor_overlay_file system_server, zygote, idmap, etc.

*​ Find more examples in ​system/sepolicy/private/file_contexts

As a result, specific rules must be followed (enforced through ​neverallows ​) when
labelling additional files in ​vendor ​ partition:

● vendor_file ​must be the default label in for all files in ​vendor ​ partition. The
platform policy requires this to access passthrough HAL implementations.

● All new ​exec_types ​ added in ​vendor ​ partition through vendor SEPolicy must have

 ​02/13/2018 13

vendor_file_type ​ attribute. This is enforced through neverallows.

● To avoid conflicts with future platform/framework updates, avoid labelling files other
than ​exec_types ​ in ​vendor ​ partition.

● All library dependencies for AOSP-identified same process HALs must be labelled as
same_process_hal_file.

Procfs (/proc)

Files in ​/proc ​ may be labeled using only the ​genfscon ​ label. In Android 7.0, both the
platform​ and ​vendor​ policy used ​genfscon ​ to label files in ​procfs ​.

Recommendation:​ Only platform policy labels ​/proc ​. If ​vendor ​ processes need access to
files in ​/proc ​ that are currently labeled with the default label (​proc ​), vendor policy MUST
not explicitly label them and should instead use the generic ​proc ​ type to add rules for
vendor domains. This allows the platform updates to accommodate future kernel
interfaces exposed through ​procfs ​ and label them explicitly as needed.

Debugfs (/sys/kernel/debug)

Debugfs ​ can be labeled in both ​file_contexts ​ and ​genfscon ​. In Android 7.0, both
platform and vendor label ​debugfs ​.

Recommendation:​ In the short term, only vendor policy may label ​debugfs ​. In the long
term, remove ​debugfs ​.

Tracefs (/sys/kernel/debug/tracing)

Tracefs ​ can be labeled in both ​file_contexts ​ and ​genfscon ​. In Android 7.0, only the
platform labels ​tracefs ​.

Recommendation:​ Only platform may label tracefs.

Sysfs (/sys)

Files in ​/sys ​ may be labeled using both ​file_contexts ​ and genfscon. In Android 7.0,
both platform and vendor use ​file_contexts ​ and ​genfscon ​ to label files in ​sysfs ​.

Recommendation:​ The platform may label only the select files listed below:

/sys/class/leds/

/sys/devices/system/cpu(/.*)?

u:object_r:sysfs_devices_system_cpu:s0

/sys/devices/virtual/block/zram\d+(/.*)?

u:object_r:sysfs_zram:s0

/sys/devices/virtual/block/zram\d+/uevent

u:object_r:sysfs_zram_uevent:s0

 ​02/13/2018 14

https://android.googlesource.com/platform/system/sepolicy/+/nougat-dr1-release/genfs_contexts
https://android.googlesource.com/device/google/marlin/+/nougat-dr1-release/sepolicy/genfs_contexts

/sys/devices/virtual/misc/hw_random(/.*)?

u:object_r:sysfs_hwrandom:s0

/sys/power/wake_lock -- u:object_r:sysfs_wake_lock:s0

/sys/power/wake_unlock -- u:object_r:sysfs_wake_lock:s0

/sys/kernel/uevent_helper -- u:object_r:usermodehelper:s0

/sys/module/lowmemorykiller(/.*)? --

u:object_r:sysfs_lowmemorykiller:s0

/sys/devices/virtual/timed_output/vibrator/enable

u:object_r:sysfs_vibrator:s0

Otherwise, only vendor may label files.

tmpfs (/dev)

Files in ​/dev ​ may be labeled in ​file_contexts ​. In Android 7.0, both platform and vendor
label files here.

Recommendation:​ Vendor may label only files in ​/dev/vendor ​ (e.g., ​/dev/vendor/foo ​,
/dev/vendor/socket/bar ​).

Rootfs (/)

Files in ​/ ​ may be labeled in ​file_contexts ​. In Android 7.0, both platform and vendor
label files here.

Recommendation:​ Only system may label files in ​/ ​.

Data (/data)

Data is labeled through a combination of ​file_contexts ​ and ​seapp_contexts ​.

Recommendation:​ Disallow vendor labeling outside ​/data/vendor ​. Only platform may
label other parts of ​/data ​.

SELinux policy building and customization

In Android 8.0, SELinux policy is split into ​platform​ and ​non-platform​ components to
allow independent platform/non-platform policy updates while maintaining compatibility.

The platform sepolicy is further split into ​platform private ​and ​platform public​ parts to
export specific types and attributes to non-platform policy writers. The platform public
types/attributes are guaranteed to be maintained as stable APIs for a given platform
version. Compatibility with previous platform public types/attributes can be guaranteed for
several versions using platform mapping files.

Platform public sepolicy

 ​02/13/2018 15

The platform public sepolicy includes everything defined under ​system/sepolicy/public​. The
platform can assume the types and attributes defined under public policy are stable APIs
for a given platform version. This forms the part of the sepolicy that is exported by
platform on which non-platform (i.e. device) policy developers may write additional
device-specific policy.

Types are versioned according to the version of the policy that non-platform files are
written against, defined by the PLATFORM_SEPOLICY_VERSION build variable. The
versioned public policy is then included with the non-platform policy and (in its original
form) in the platform policy. Thus, the final policy includes the private platform policy, the
current platform’s public sepolicy, the device-specific policy, and the versioned public policy
corresponding to the platform version against which the device policy was written.

Platform private sepolicy

The platform private sepolicy includes everything defined under ​system/sepolicy/private​.
This part of the policy forms platform-only types, permissions, and attributes required for
platform functionality. These are ​not exported​ to the vendor/device policy writers.
Non-platform policy writers must not write their policy extensions based on
types/attributes/rules defined in platform private sepolicy. Moreover, these rules are
allowed to be modified or may disappear as part of a framework-only update.

Platform private mapping

The platform private mapping includes policy statements that map the attributes exposed
in platform public policy of the previous platform versions to the concrete types used in
current platform public sepolicy. This ensures non-platform policy that was written based
on platform public attributes from the previous platform public sepolicy version(s)
continues to work. The versioning is based on the PLATFORM_SEPOLICY_VERSION build
variable set in AOSP for a given platform version. A separate mapping file exists for each
previous platform version from which this platform is expected to accept vendor policy.

Building SELinux policy

SELinux policy in Android 8.0 is made by combining pieces from ​/system ​ and ​/vendor ​.
Logic for setting this up appropriate is in ​/platform/system/sepolicy/Android.mk ​.

Policy exists in the following locations:

Location Contains

system/sepolicy/public Contains the platform’s sepolicy API.

system/sepolicy/private Contains platform implementation details (vendors
can ignore)

 ​02/13/2018 16

https://android.googlesource.com/platform/system/sepolicy/+/master/public/
https://android.googlesource.com/platform/system/sepolicy/+/master/private/

system/sepolicy/vendor Contains freebies for vendors to use (vendors can
ignore if desired)

BOARD_SEPOLICY_DIRS Contains vendor sepolicy.

The build system takes this policy and produces platform and non-platform policy
components on the system partition and vendor partition, respectively. Steps include:

1. Converting policies to the SELinux CIL format, specifically:

○ public platform policy

○ combined private + public policy

○ public + vendor and BOARD_SEPOLICY_DIRS policy

2. Versioning the policy provided by public as part of the vendor policy. Done by using the
produced public CIL policy to inform the combined public + vendor +
BOARD_SEPOLICY_DIRS policy as to which parts must be turned into attributes that will
be linked to the platform policy.

3. Creating a mapping file linking the platform and non-platform parts. Initially, this just
links the types from the public policy with the corresponding attributes in the vendor
policy; later it will also provide the basis for the file maintained in future platform
versions, enabling compatibility with vendor policy targeting this platform version.

4. Combining policy files (describe both on-device and precompiled solutions).

○ Combine mapping, platform and non-platform policy.

○ Compile output binary policy file.

Policy compatibility
This section describes the design for handling the ​policy compatibility issues​ with platform
OTAs, where new platform SELinux settings may differ from old vendor SELinux settings.

The design considers a binary distinction between ​platform​ and ​non-platform​; the scheme
becomes more complicated if non-platform partitions generate dependencies, such as
platform ​ < ​vendor ​ < ​oem ​. While the Android 8.0 model handles separation between the
SoC (​vendor ​) and the ODM (​odm ​) partitions, the working model for SE policy is that the SoC
and ODM policy is a single piece.

Goals Assumptions

● Align with and enable Android 8.0
architecture goals.

● Vendor update may never go up a version
before the platform, i.e. the platform

 ​02/13/2018 17

● Ensure vendor code continues to
work after platform update.

● Ability to deprecate/change policy.

● No required knowledge of specific
version changes for policy
development.

● Enable and encourage vendor
policy customization and
specification.

version is the same or newer than that on
vendor.

● A set window of versions must be
supported.

● Vendor policy version is made available to
determine the platform policy to be
delivered; this is similar to determining
Vendor Native Development Kit (VNDK)
compatibility and needs.

SELinux global policy is divided into private and public components based on the Android
8.0 model. Public components consist of the policy and associated infrastructure, which are
guaranteed to be available for a platform version. This policy will be exposed to vendor
policy writers to enable vendors to build a vendor policy file, which when combined with
the platform-provided policy, results in a fully-functional policy for a device.

● For versioning, the exported platform-public policy will be written as ​attributes​.

● For ease of policy writing, exported types will be transformed into ​versioned attributes
as part of the policy build process. Public types may also be used directly in labeling
decisions provided by vendor contexts files.

A mapping must be maintained between exported concrete types in platform policy
and the corresponding versioned attributes for each platform version​. This ensures
that when objects are labeled with a type, it does not break behavior guaranteed by the
platform-public policy in a previous version. This mapping is maintained by keeping a
mapping file up-to-date for each platform version, which keeps attribute membership
information for each type exported in public policy.

Compatibility attributes
SELinux policy is an interaction between source and target types for specific object classes
and permissions. Every object (processes, files, etc.) affected by SELinux policy may have
only one type, but that type may have multiple attributes.

Policy is written mostly in terms of existing types:

allow ​source_type​ ​target_type​: ​target_class​ ​permission(s)​;

This works because the policy was written with knowledge of all types. However, if the
vendor policy and platform policy use specific types, and the label of a specific object
changes in only one of those policies, the other may contain policy that gained or lost

 ​02/13/2018 18

access previously relied upon. For example:

File_contexts:

/sys/A u:object_r:sysfs:s0

Platform:​ allow p_domain sysfs:class ​ perm;
Vendor:​ allow v_domain sysfs:class ​ perm;

Could be changed to:

File_contexts:

/sys/A u:object_r:sysfs_A:s0

Although the vendor policy would remain the same, the ​v_domain ​ would lose access due
to the lack of policy for the new ​sysfs_A ​ type.

By defining a policy in terms of attributes, we can give the underlying object a type that has
an attribute corresponding to policy for both the platform and vendor code. This can be
done for all types to effectively create an ​attribute-policy​ wherein concrete types are never
used. In practice, this is required only for the portions of policy that overlap between
platform and vendor, which are defined and provided as ​platform public policy​ that gets
built as part of the vendor policy.

Defining public policy as versioned attributes satisfies two policy compatibility goals:

● Ensure Vendor code continues to work after platform update​. Achieved by adding
attributes to concrete types for objects corresponding to those on which vendor code
relied, preserving access.

● Ability to deprecate policy​. Achieved ​by clearly delineating policy sets into attributes
that can be removed as soon as the version to which they correspond no longer is
supported. Development can continue in the platform, knowing the old policy is still
present in the vendor policy and will be automatically removed when/if it upgrades.

Policy writability

To meet the goal of not ​requiring knowledge of specific version changes for policy
development, Android 8.0 includes a mapping between platform-public policy types and
their attributes. We do this by mapping type ​foo ​ to attribute ​foo_v ​N​, where ​N​ is the
version targeted. ​vN ​ corresponds to the PLATFORM_SEPOLICY_VERSION build variable and
is of the form ​MM.nn ​, where ​MM ​ corresponds to the platform SDK number and ​NN ​ is a
platform sepolicy specific version.

Attributes in public policy are not versioned, but rather exist as an API on which platform
and vendor policy can build to keep the interface between the two partitions stable. Both

 ​02/13/2018 19

platform and vendor policy writers can continue to write policy as it is written today.

Platform-public policy exported as ​allow source_foo target_bar: ​class perm​; ​is
included as part of the vendor policy. During compilation (which would include the
corresponding version) it is transformed into the policy that will go to the vendor portion of
the device (shown in the transformed CIL):

 (​allow source_foo_v ​N​ target_bar_v ​N​ (​class (perm)))

As vendor policy is never ahead of the platform, it should not be concerned with prior
versions. However, platform policy will need to know how far back vendor policy is, include
attributes to its types, and set policy corresponding to versioned attributes.

Policy diffs

Automatically creating attributes by adding ​_v​N​ to the end of each type does nothing
without mapping of attributes to types across version diffs. We need to maintain a
mapping between versions for attributes and a mapping of types to those attributes. This is
done in the aforementioned mapping files with statements, such as (CIL):

(typeattributeset foo_vN (foo))

Platform upgrades

The following section details scenarios for platform upgrades.

Same types

This scenario occurs when an object does not change labels in policy versions. This is the
same for source and target types and can be seen with ​/dev/binder ​, which is labeled
binder_device ​ across all releases. It is represented in transformed policy as:

binder_device_v1 … binder_device_vN

When upgrading from ​v1 ​ → ​v2 ​, the platform policy must contain:

type binder_device; -> (type binder_device) (in CIL)

In the v1 mapping file (CIL):

(typeattributeset binder_device_v1 (binder_device))

 ​02/13/2018 20

In the v2 mapping file (CIL):

(typeattributeset binder_device_v2 (binder_device))

In the v1 vendor (non_plat) policy (CIL):

(typeattribute binder_device_v1)

(allow binder_device_v1 …)

In the v2 vendor (non_plat) policy (CIL):

(typeattribute binder_device_v2)

(allow binder_device_v2 …)

New types

This scenario occurs when the platform has added a new type, which can happen when
adding new features or during policy hardening.

● New feature​. When the type is labeling an object that was previously non-existent
(such as a new service process), the vendor code did not previously interact with it
directly so no corresponding policy exists. The new attribute corresponding to the type
does not have an attribute in the previous version, and so would not need an entry in
the mapping file targeting that version.

● Policy hardening​. When the type represents policy hardening, the new type attribute
must link back to a chain of attributes corresponding to the previous one (similar to
the previous example changing ​/sys/A ​ from ​sysfs ​ to ​sysfs_A ​). Vendor code would
rely on a rule enabling access to ​sysfs ​, and would need to include it as an attribute of
the new type

When upgrading from ​v1​ → ​v2​, the platform policy must contain:

type sysfs_A; -> (type sysfs_A) (in CIL)

Type sysfs; (type sysfs) (in CIL)

In the v1 mapping file (CIL):

(typeattributeset sysfs_v1 (sysfs sysfs_A))

In the v2 mapping file (CIL):

 ​02/13/2018 21

(typeattributeset sysfs_v2 (sysfs))

(typeattributeset sysfs_A_v2 (sysfs_A))

In the v1 vendor (non_plat) policy (CIL):

(typeattribute sysfs_v1)

(allow … sysfs_v1 …)

In the v2 vendor (non_plat) policy (CIL):

(typeattribute sysfs_A_v2)

(allow … sysfs_A_v2 …)

(typeattribute sysfs_v2)

(allow … sysfs_v2 …)

Removed types

This (rare) scenario occurs when a type is removed, which can happen when the underlying
object:

● Remains but gets a different label.

● Is removed by the platform.

During policy loosening, a type is removed and the object labeled with that type is given a
different, already-existing label. This represents a merging of attribute mappings: The
vendor code must still be able to access the underlying object by the attribute it used to
posses, but the rest of the system must now be able to access it with its new attribute.

If the attribute to which it has been switched is new, then relabeling is the same as in the
new type case, except that when an existing label is used, the addition of the old attribute
new type would cause other objects also labeled with this type to be newly accessible. This
is essentially what is done by the platform, though, and is deemed to be an acceptable
tradeoff to maintain compatibility.

(typeattribute sysfs_v1)

(allow … sysfs_v1 …)

Example Version 1: Collapsing types (removing sysfs_A)

When upgrading from ​v1​ → ​v2​, the platform policy must contain:

 ​02/13/2018 22

type sysfs; (type sysfs) (in CIL)

In the v1 mapping file (CIL):

(typeattributeset sysfs_v1 (sysfs))

(type sysfs_A) # in case vendors used the sysfs_A label on objects

(typeattributeset sysfs_A_v1 (sysfs sysfs_A))

In the v2 mapping file (CIL):

(typeattributeset sysfs_v2 (sysfs))

In the v1 vendor (non_plat) policy (CIL):

(typeattribute sysfs_A_v1)

(allow … sysfs_A_v1 …)

(typeattribute sysfs_v1)

(allow … sysfs_v1 …)

In the v2 vendor (non_plat) policy (CIL):

(typeattribute sysfs_v2)

(allow … sysfs_v2 …)

Example Version 2: Removing completely (foo type)

When upgrading from ​v1​ → ​v2​, the platform policy must contain:

nothing - we got rid of the type

In the v1 mapping file (CIL):

(type foo) #needed in case vendors used the foo label on objects

(typeattributeset foo_v1 (foo))

In the v2 mapping file (CIL):

nothing - get rid of it

 ​02/13/2018 23

In the v1 vendor (non_plat) policy (CIL):

(typeattribute foo_v1)

(allow foo …)

(typeattribute sysfs_v1)

(allow sysfs_v1 …)

In the v2 vendor (non_plat) policy (CIL):

(typeattribute sysfs_v2)

(allow sysfs_v2 …)

New class/permissions

This scenario occurs when a platform upgrade introduces new policy components that do
not exist in previous versions. For example, when we added the ​servicemanager ​ object
manager that created the add, find, and list permissions, vendor daemons wanting to
register with the ​servicemanager ​ would have needed permissions that were not
available. In Android 8.0, only the platform policy may add new classes and permissions.

To allow all domains that could have been created or extended by vendor policy to use the
new class without obstruction, the platform policy needs to include a rule similar to:

allow {domain -coredomain} *:new_class perm;

This may even require policy allowing access for all interface (public policy) types, to be
sure vendor image gains access. If this results in unacceptable security policy (as it may
have with the servicemanager changes), a vendor upgrade could potentially be forced.

Removed class/permissions

This scenario occurs when an object manager is removed (such as the ​ZygoteConnection
object manager) and should not cause issues. The object manager class and permissions
could remain defined in policy until the vendor version no longer uses it. This would be
done by adding the definitions to the corresponding mapping file.

Vendor customization for new/relabeled types

New vendor types are at the core of vendor policy development as they are needed to
describe new processes, binaries, devices, subsystems, and stored data. As such, it is
imperative to allow the creation of vendor-defined types.

 ​02/13/2018 24

As vendor policy is always the oldest on the device, there is no need to automatically
convert all vendor types to attributes in policy. The platform does not rely on anything
labeled in vendor policy because the platform has no knowledge of it; however, the
platform will provide the attributes and public types it uses to interact with objects labeled
with these types (such as domain, ​sysfs_type ​, etc.). For the platform to continue to
interact correctly with these objects, the attributes and types must be appropriately applied
and specific rules may need to be added to the customizable domains (such as ​init ​).

Platform-public policy
The platform-public policy is the heart of conforming to the Android 8.0 architecture model
without simply maintaining the union of platform policies from v1 and v2. Vendors will be
exposed to a subset of platform policy that contains useable types and attributes and rules
on those types and attributes which then becomes part of vendor policy (i.e.
nonplat_sepolicy.cil ​).

Types and rules will be automatically translated in the vendor-generated policy into
attribute_v​N​ such that all platform-provided types are versioned attributes (however
attributes are not versioned). The platform is responsible for mapping the concrete types it
provides into the appropriate attributes to ensure that vendor policy continues to function
and that the rules provided for a particular version are included. The combination of
platform-public policy and vendor policy should satisfy the Android 8.0 architecture model
goal of allowing independent platform and vendor builds.

Mapping to attribute chains

When using attributes to map to policy versions, a type maps to an attribute or multiple
attributes, ensuring objects labeled with the type are accessible via attributes
corresponding to their previous types.

Maintaining a goal to hide version information from the policy writer means automatically
generating the versioned attributes and assigning them to the appropriate types. In the
common case of static types, this is straightforward: ​type_foo_v2 ​ maps to ​type_foo_v1 ​.

For an object label change such as ​sysfs ​ → ​sysfs_A ​ or ​mediaserver ​ → ​audioserver ​,
creating this mapping is non-trivial (and is described in the examples above). Platform
policy maintainer must determine how to create the mapping at transition points for
objects, which requires understanding the relationship between objects and their assigned
labels and determining when this occurs. For backwards compatibility, this complexity
needs to be managed on the platform side, which is the only partition that may uprev.

Version uprevs

For simplicity, we uprev the platform sepolicy version when a new release branch is cut. As
described above, the version number is contained in ​PLATFORM_SEPOLICY_VERSION ​ and

 ​02/13/2018 25

is of the form ​MM.nn ​, where ​MM ​ corresponds to the SDK value and ​nn ​ is a private value
maintained in​ /platform/system/sepolicy. ​ For example, ​19.0 ​ for Kitkat, ​21.0 ​ for
Lollipop, ​22.0 ​ for Lollipop-MR1 ​23.0 ​ for Marshmallow, ​24.0 ​ for Nougat, ​25.0 ​ for
Nougat-MR1, and ​26.0 ​ for O. An MR bump to O necessitating an incompatible change in
system/sepolicy/public ​ but not an API bump could then result in releasing a new
version: ​26.1 ​. The version present in a development branch is a
never-to-be-used-in-shipping-devices ​10000.0 ​.

We may deprecate oldest version when upreving. For example, in Marshmallow, we may
support LMP-MR1 (​v23 ​), LMP (​v22 ​), and KK (​19.0 ​). When Nougat (​25.0 ​) is released, we
may drop KK (​19.0 ​). For input on when to deprecate a version X, we may collect the
number of devices with vendor policies running on X which can still receive major platform
update without vendor update. If the number is less than a certain threshold, then we
deprecate X.

Performance impact of multiple attributes

As described in: ​https://github.com/SELinuxProject/cil/issues/9​ a large number of attributes
assigned to a type result in performance issues in the event of a policy cache (avc) miss.

This was confirmed to be an issue in Android, so ​changes were made​ to Android 8.0 to
remove attributes added to the policy by the policy compiler, as well as to remove unused
attributes. These changes resolved performance regressions.

Customizing SEPolicy
The split of SELinux policy and automatic versioning of public types allows policy writers to
write policy for their customizations to Android in the framework as well as the vendor
implementation. However, to not break the ​Design goals​, the design has limitations and
imposes rules to be followed when customizing policy for an Android device.

This section provides guidelines for partner SELinux policy in Android 8.0, including details
on Android Open Source Project (AOSP) SEPolicy and SEPolicy extensions.

Policy placement

In Android 7.0, partners could add policy to BOARD_SEPOLICY_DIRS, including policy meant
to augment AOSP policy across different device types. In Android 8.0, adding a policy to
BOARD_SEPOLICY_DIRS places the policy only in the vendor image.

In Android 8.0 AOSP, policy exists in the following locations:

● system/sepolicy/public​. Includes policy exported for use in vendor-specific policy.
Everything goes into the Android 8.0 compatibility infrastructure, and vendors include
it as part of their policy so it can be relied upon (leading to restrictions on the type of
policy that can be placed here). Consider this the platform’s exported policy API:

 ​02/13/2018 26

https://github.com/SELinuxProject/cil/issues/9
http://marc.info/?l=selinux&m=149202161421482&w=2

Anything that deals with the interface between ​/system ​ and ​/vendor ​ should be here.

● system/sepolicy/private​. Includes policy necessary for the functioning of the system
image, but of which vendor image policy should have no knowledge.

● system/sepolicy/vendor​. Includes policy for components that go in /vendor but exist
in the core platform tree (not device-specific directories). This is an artifact of build
system’s distinction between devices and global components; conceptually this is a
part of the device-specific policy described below.

● device/XXX/YYY/sepolicy​. Includes device-specific policy. Also includes device
customizations to policy, which in Android 8.0 now corresponds to policy for
components on the vendor image.

Supported policy scenarios

On devices launching with Android 8.0, the vendor image must work with the OEM system
image and the reference AOSP system image provided by Google (and pass CTS on this
reference image). These requirements ensure a clean separation between the framework
and the vendor code. Such devices support the following scenarios.

vendor-image-only extensions

Example​: Adding a new service to ​vndservicemanager ​ from the vendor image that
supports processes from the vendor image.

As with devices launching with previous Android versions, add device-specific
customization in ​device/XXX/YYY/sepolicy ​. New policy governing how vendor
components interact with (only) other vendor components​ should involve types present
only in ​device/XXX/YYY/sepolicy​. Policy written here allows code on vendor to work,
will not be updated as part of a framework-only OTA, and will be present in the combined
policy on a device with the reference AOSP system image.

vendor-image support to work with AOSP

Example​: Adding a new process (registered with ​hwservicemanager ​ from the vendor
image) that implements an AOSP-defined HAL.

As with devices launching with previous Android versions, perform device-specific
customization in ​device/XXX/YYY/sepolicy ​. The policy exported as part of
system/sepolicy/public/ ​ is available for use, and is shipped as part of the vendor
policy. Types and attributes from the public policy may be used in new rules dictating
interactions with the new vendor-specific bits, subject to the provided ​neverallow
restrictions. As with the vendor-only case, new policy here will not be updated as part of a
framework-only OTA and will be present in the combined policy on a device with the
reference AOSP system image.

 ​02/13/2018 27

system-image-only extensions

Example​: Adding a new service (registered with servicemanager) that is accessed only by
other processes from the system image.

Add this policy to ​system/sepolicy/private ​. You can add extra processes or objects to
enable functionality in a partner system image, provided those new bits don’t need to
interact with new components on the vendor image (specifically, such processes or objects
must fully function without policy from the vendor image). The policy exported by
system/sepolicy/public ​ is available here just as it is for vendor-image-only extensions.
This policy is part of the system image and could be updated in a framework-only OTA, but
will not be present when using the reference AOSP system image.

vendor-image extensions that serve extended AOSP components

Example:​ A new, non-AOSP HAL for use by extended clients that also exist in the AOSP
system image (such as an extended system_server).

Policy for interaction between system and vendor must be included in the
device/XXX/YYY/sepolicy ​ directory shipped on the vendor partition. This is similar to
the above scenario of adding vendor-image support to work with the reference AOSP
image, except the modified AOSP components may also require additional policy to
properly operate with the rest of the system partition (which is fine as long as they still
have the public AOSP type labels).

Policy for interaction of public AOSP components with system-image-only extensions
should be in ​system/sepolicy/private ​. This has the following consequences for the
following system - vendor image combinations:

System Vendor Notes

O Partner O Combined policy has knowledge of both parts.

O AOSP O Combined policy includes new types and policy from vendor image,
but as AOSP does not have its components extended to use the new
HAL, it isn’t needed. The lack of extension also means the partner
policy in ​system/sepolicy/private ​ is unnecessary.

P Partner O You may need to make changes to:
● System components that used AOSP types​. For example, if the

extended ​system_server ​ were split into multiple processes,
the new processes could have new types provided they are
properly linked to the old types using the compatibility
infrastructure (provided by AOSP).

● System-only components​. Includes adding policy for how such
components interact with components labeled with AOSP
public types (done in ​system/sepolicy/private ​).

 ​02/13/2018 28

P AOSP O Similar to O AOSP system image - O vendor image.

system-image extensions that access only AOSP interfaces

Example:​ A new, non-AOSP system process must access a HAL on which AOSP relies.

This is similar to the ​system-image-only extension example​, except new system
components may interact across the ​system/vendor ​ interface. Policy for the new system
component must go in ​system/sepolicy/private ​, which is acceptable provided it is
through an interface already established by AOSP in ​system/sepolicy/public ​ (i.e. the
types and attributes required for functionality are there). While policy could be included in
the device-specific policy, it would be unable to use other ​system/sepolicy/private
types or change (in any policy-affecting way) as a result of a framework-only update. The
policy may be changed in a framework-only OTA, but will not be present when using an
AOSP system image (which won’t have the new system component either).

vendor-image extensions that serve new system components

Example:​ Adding a new, non-AOSP HAL for use by a client process without an AOSP
analogue (and thus requires its own domain).

Similar to the ​AOSP-extensions example​, policy for interactions between system and
vendor must go in the ​device/XXX/YYY/sepolicy ​ directory shipped on the vendor
partition (to ensure the system policy has no knowledge of vendor-specific details). You can
add new public types that extend the policy in ​system/sepolicy/public ​; this should be
done only in addition to the existing AOSP policy, i.e. do not remove AOSP public policy.
The new public types can then be used for policy in ​system/sepolicy/private ​ and in
device/XXX/YYY/sepolicy ​.

Keep in mind that every addition to ​system/sepolicy/public ​ adds complexity by
exposing a new compatibility guarantee that must be tracked in a mapping file and which is
subject to other restrictions. Only new types and corresponding allow rules may be added
in ​system/sepolicy/public ​; attributes and other policy statements are not supported.
In addition, new public types cannot be used to directly label objects in the ​/vendor ​ policy.

Unsupported policy scenarios

Devices launching with Android 8.0 do not support the following policy scenario and
examples.

Additional extensions to system-image that need permission
to new vendor-image components after a framework-only OTA

Example: ​A new non-AOSP system process, requiring its own domain, is added in Android

 ​02/13/2018 29

P and needs access to a new, non-AOSP HAL.

Similar to ​new (non-AOSP) system and vendor components​ interaction, except the new
system type is introduced in a framework-only OTA. Although the new type could be added
to the policy in ​system/sepolicy/public ​, the existing vendor policy has no knowledge
of the new type as it is tracking only the Android 8.0 system public policy. AOSP handles
this by exposing vendor-provided resources via an attribute (e.g. ​hal_foo ​ attribute) but as
attribute partner extensions are not supported in ​system/sepolicy/public ​, this
method is unavailable to vendor policy. Access must be provided by a previously-existing
public type.

Example: ​A change to a system process (AOSP or non-AOSP) must change how it interacts
with new, non-AOSP vendor component.

The policy on the system image must be written without knowledge of specific vendor
customizations. Policy concerning specific interfaces in AOSP is thus exposed via attributes
in system/sepolicy/public so that vendor policy can opt-in to future system policy which
uses these attributes. However, ​attribute extensions in ​system/sepolicy/public​ are
not supported​, so all policy dictating how the system components interact with new
vendor components (and which is not handled by attributes already present in AOSP
system/sepolicy/public ​) must be in ​device/XXX/YYY/sepolicy ​. This means that
system types cannot change the access allowed to vendor types as part of a
framework-only OTA.

 ​02/13/2018 30

